Part Number Hot Search : 
10200 PQ108A1 2SK2847 C2R01T 0EVKI 10200 PT2380 AN921
Product Description
Full Text Search
 

To Download IRFSL4310ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  4/23/12 www.irf.com 1 hexfet   power mosfet benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits irfb4310zpbf irfs4310zpbf IRFSL4310ZPBF d 2 pak irfs4310zpbf to-220ab irfb4310zpbf to-262 IRFSL4310ZPBF s d g s d g s d g d d d gds gate drain source s d g v dss 100v r ds(on) typ. 4.8m  max. 6.0m  i d (silicon limited) 127a  i d (package limited) 120a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r ? jc junction-to-case  ??? 0.6 r ? cs case-to-sink, flat greased surface , to-220 0.50 ??? c/w r ? ja junction-to-ambient, to-220  ??? 62 r ? ja junction-to-ambient (pcb mount) , d 2 pak  ??? 40 475 see fig. 14, 15, 22a, 22b, 250 18 -55 to + 175 20 1.7 10lb
in (1.1n
m) 300 max. 127  90  560 120  

 2 www.irf.com    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 120a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.   repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.28mh r g = 25 ? , i as = 58a, v gs =10v. part not recommended for use above the eas value and test conditions.  i sd ? 75a, di/dt ? 600a/ s, v dd ?? v (br)dss , t j ? 175c. s d g  pulse width ? 400 s; duty cycle ? 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.
 ?  
    
  static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.11 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.8 6.0 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.7 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 150 ??? ??? s q g total gate charge ??? 120 170 nc q gs gate-to-source charge ??? 29 ??? q gd gate-to-drain ("miller") charge ??? 35 q sync total gate charge sync. (q g - q gd ) ??? 85 ??? t d(on) turn-on delay time ??? 20 ??? ns t r rise time ??? 60 ??? t d(off) turn-off delay time ??? 55 ??? t f fall time ??? 57 ??? c iss input capacitance ??? 6860 ??? pf c oss output capacitance ??? 490 ??? c rss reverse transfer capacitance ??? 220 ??? c oss eff. (er) effective output capacitance (energy related) ??? 570 ??? c oss eff. (tr) effective output capacitance (time related) ??? 920 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 127 a (body diode) i sm pulsed source current ??? ??? 560 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 40 ns t j = 25c v r = 85v, ??? 49 t j = 125c i f = 75a q rr reverse recovery charge ??? 58 nc t j = 25c di/dt = 100a/ s  ??? 89 t j = 125c i rrm reverse recovery current ??? 2.5 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 75a r g = 2.7 ? v gs = 10v  v dd = 65v i d = 75a, v ds =0v, v gs = 10v t j = 25c, i s = 75a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 75a  v ds = v gs , i d = 150 a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 0v to 80v  , see fig. 11 v gs = 0v, v ds = 0v to 80v conditions v ds = 50v, i d = 75a i d = 75a v gs = 20v v gs = -20v

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60 s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60 s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ? ? ) v ds = 50v ? 60 s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 75a

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 90 100 110 120 130 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e i d = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 e n e r g y ( j ) 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 i d , d r a i n c u r r e n t ( a ) limited by package 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 400 800 1200 1600 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 18a 29a bottom 58a

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ??? ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i ? ? ? ? ? c ? 4 ? 4 r 4 r 4 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 58a

 6 www.irf.com  
 
   fig 16. threshold voltage vs. temperature  
    

 
    
    -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a id = 150 a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 30a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 45a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 30a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 45a v r = 85v t j = 125c t j = 25c

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform   
  ????   ???????          + -   vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k   
  ?????  
 ????  
 ???? 

 
 
 !
 p.w. period di/dt diode recovery dv/dt ripple ? 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 !""!  + - + + + - - -        ??? "# 
$%  ???  "
 !
&
 '('' ???   
$)) ??? '(''*
" 
(



    #$%&&
"

#$%&&'
&   "
#
 
#$%&& fig 21.    
 
  for hexfet  power mosfets

 8 www.irf.com to-220ab packages are not recommended for surface mount application. 
     
     

 

 
  lot code 1789 example: t his is an irf 1010 note: "p" in assembly line position i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 int ernat ional part number rect ifier lot code assembly logo year 0 = 2000 dat e code week 19 line c  
         
    

 www.irf.com 9 to-262 part marking information logo rectifier international lot code assembly logo rectifier international dat e code we e k 19 ye ar 7 = 1997 part number a = as s e mb l y s i t e code or product (optional) p = de s i gnat e s l e ad- f r e e example: this is an irl3103l lot code 1789 assembly part number dat e code week 19 line c lot code year 7 = 1997 as s embled on ww 19, 1997 in the assembly line "c" to-262 package outline (dimensions are shown in millimeters (inches))  
         
    

 10 www.irf.com  

     f 530s this is an irf530s with lot code 8024 as s embled on ww 02, 2000 in the assembly line "l" assembly lot code int ernational rectifier logo part number dat e code year 0 = 2000 week 02 line l  

    (dimensions are shown in millimeters (inches)) dat e code in the assembly line "l" as s embled on ww 02, 2000 t his is an irf 530s wit h lot code 8024 international logo rectifier lot code part number f 530s  
         
    

 www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. ir world headquarters: 101n. sepulveda., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 4/12  
        3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.


▲Up To Search▲   

 
Price & Availability of IRFSL4310ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X